Minimum variance filters and mixed spectrum estimation
نویسندگان
چکیده
منابع مشابه
1 Minimum Variance Filters and Mixed Spectrum Estimation
Résumé Cet article présente un estimateur de densité spectrale défini à partir d’un estimateur du Minimum de Variance (MV) Normalisé tel que celui proposé par Lagunas. Avec une résolution fréquentielle équivalente, l’objectif de ce nouvel estimateur est de préserver l’estimation de l’amplitude contrairement à l’estimateur de Lagunas. Cette proposition s’appuie sur l’étude de la fonction de tran...
متن کاملWeak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods
Large-scale structure distorts the images of background galaxies, which allows one to measure directly the projected distribution of dark matter in the universe and determine its power spectrum. Here we address the question of how to extract this information from the observations. We derive minimum variance estimators for projected density reconstruction and its power spectrum and apply them to...
متن کاملSingular Spectrum Analysis Based on the Minimum Variance Estimator
In recent years Singular Spectrum Analysis (SSA), used as a powerful technique in time series analysis, has been developed and applied to many practical problems. In this paper, we introduce the SSA technique based on the minimum variance estimator. We also consider the SSA technique based on the minimum variance and structured total least squares estimators in reconstructing and forecasting ti...
متن کاملAsymptotically minimum variance second-order estimation for complex circular processes
This paper addresses asymptotically minimum variance (AMV) of parameter estimators within the class of algorithms based on second-order statistics for estimating parameter of strict-sense stationary complex circular processes. As an application, the estimation of the frequencies of cisoids for mixed spectra time series containing a sum of cisoids and an MA process is considered. r 2005 Elsevier...
متن کاملFast algorithms for least-squares-based minimum variance spectral estimation
The minimum variance (MV) spectral estimator is a robust high-resolution frequencydomain analysis tool for short data records. The traditional formulation of the minimum variance spectral estimation (MVSE) depends on the inverse of a Toeplitz autocorrelation matrix, for which a fast computational algorithm exists that exploits this structure. This paper extends the MVSE approach to two data-onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2000
ISSN: 0165-1684
DOI: 10.1016/s0165-1684(00)00137-7